Science for Solutions: Linking D/A T/A and D ECE S 100 N S

Seismic Hazard in Sacramento-San Joaquin River Delta using UCERF3 Source Models and NGA-West2 Ground Motion Models

Paolo Zimmaro, Peter M. Powers, Jonathan P. Stewart, Nico Luco, Allison M. Shumway, and Scott J. Brandenberg

Civil and Environmental Engineering

Engineering Sustainable Infrastructure for the Future

Science for Solutions: Linking DAJA and DECESSONS

Acknowledgments

USGS seismic hazard

mapping team

Mark Petersen Sanaz Rezaeian

California DWR

Earthquake hazard

Earthquakes

(Central Italy earthquake, Aug-Oct, 2016)

Induced seismicity (Central and Eastern US)

Fault surface ruptures (Central Italy earthquake, Aug-Oct, 2016)

Earthquake hazard

Earthquake-induced liquefaction

(Loma Prieta, 1989)

...And its effects (Kocaeli, 1999, Turkey)

Earthquake-induced landslides

(El Salvador, 2001) Ph. Edwin Harp

Levee failures (Japan, 2007)

11/17/2016

New challenges

Increasing rate of induced seismicity

From Bourne et al. (2015)

Impact of climate change

10

Seismic vulnerability of the Delta Region's levee system

CALFED (2000) report on seismic vulnerability of the Delta levees: "historical information indicates that there has been little damage to Delta levees caused by earthquakes."

DRMS (2008) Delta Risk Management Strategy Project: "damaging **earthquakes are relatively rare, but high-consequence**, events that must be considered in any rational risk assessment for the Delta region."

Deverel et al. (2016) discuss **possible indication of earthquake-related levee failures** after the **1906** San Francisco earthquake.

What if...

Multiple failures: \$15 billion total losses Water delivery interrupted for 20 to 30 months

Previous studies

WGCEP (2003)

DRMS (2008; 2009)

1. Earthquake sources characterization

- Finite faults
- Area sources and background seismicity (lack of knowledge!)

2. Earthquake recurrence relationship

^{11/17/2016}

3. Ground motion models (GMMs) – Based on data

4. Hazard results

Hazard curve

Disaggregation of the seismic hazard

PSHA for the Sacramento-San Joaquin River – This study

Source model UCERF3, Field et al. (2014)

Ground motion models NGA West 2, Bozorgnia et al. (2014)

Seismically-active faults in the Delta – This study

11/17/2016

DRMS (2009) vs This study

Dunningan Hills fault background off-fault seismicity Midland fault

Hazard results for Sherman Island

Hazard curve for Peak ground acceleration (PGA)

Disaggregation of the seismic hazard: Sherman Island $-T_{R} = 475$ years

Disaggregation of the seismic hazard: Sherman Island – $T_R = 475$ years

	Relative contribution to the hazard (%)
Faults	PGA - <i>V_{s30}</i> = 300 m/s
Pittsburg (Kirby hills)	20.9
Midland	9.28
Green Valley	10.9
Clayton	-
Hayward system	2.46
Rodgers Creek	2.1
Franklin	2.93
Concord	2.33
Calaveras system	2.42
Background seismicity (gridded)	35.1

Disaggregation of the seismic hazard: Sherman Island – $T_R = 475$ years

	Relative contribution to the hazard (%)
Faults	PGA - <i>V_{s30}</i> = 300 m/s
Pittsburg (Kirby hills)	20.9
Midland	9.28
Green Valley	10.9
Clayton	-
Hayward system	2.46
Rodgers Creek	2.1
Franklin	2.93
Concord	2.33
Calaveras system	2.42
Background seismicity (gridded)	35.1

Background seismicity has a high relative contribution to the hazard

Disaggregation of the seismic hazard: Sherman Island – $T_R = 475$ years

	Relative contribution to the hazard (%)
Faults	PGA - <i>V_{s30}</i> = 300 m/s
Pittsburg (Kirby hills)	20.9
Midland	9.28
Green Valley	10.9
Clayton	-
Hayward system	2.46
Rodgers Creek	2.1
Franklin	2.93
Concord	2.33
Calaveras system	2.42
Background seismicity (gridded)	35.1

faults characterized by the highest contribution to the hazard are: (1) Pittsburg (Kirby Hills), (2) Green Valley, and (3) Midland.

Hazard Map TR = 475 yrs V_{s30} 300m/s PGA (consistent with soils underlying soft shallow layers)

11/17/2016

Paolo Zimmaro, Ph.D.

Conclusions

- Seismic hazard should be carefully taken into account in the Delta area
- The new fault model used in this study (UCERF3) provides better constraints on faults not included in previous inventories
- The use of recent GMMs increases the reliability of hazard results
- Close faults (e.g. Pittsburg (Kirby Hills), Midland) dominate the hazard in the Delta area
- Background seismicity plays an important role for the hazard of the Delta area
- Source characterization and site-specific studies will be beneficial

Science for Solutions: Linking DATA and DECESSONS

Thank you!

References

- Abrahamson N.A., Silva W.J., Kamai R. (2014): "Summary of the ASK14 ground motion relation for active crustal regions". Eq. Spectra; 30, 1025–1055.
- Ancheta T.D., Darragh R.B., Stewart J.P., Seyhan E., Silva W.J., Chiou B.S.J., Kishida T. (2014): "NGA-West2 database". Eq. Spectra; 30, 989-1005.
- Baltay A.S. J. Boatwright (2015): "Ground-motion observations of the 2014 South Napa Earthquake". Seismological Research Letters; 86, 355-360.
- Boore D.M., Stewart J.P., Seyhan E., Atkinson, G.M. (2014): "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes". Eq. Spectra; 30, 1057–1085.
- Bourne S.J., Oates S.J., Bommer J.J., Dost B., van Elk J., Doornhof D. (2015): "A Monte Carlo Method for Probabilistic Hazard Assessment of Induced Seismicity due to Conventional Natural Gas Production". Bulletin of the Seismological Society of America; 105, 1721-1738.
- Bozorgnia Y., et al. (2014): "NGA-West2 research project". Eq. Spectra; 30, 973–987.
- Bray J. (2013): "Liquefaction Effects on Structures". 2013 Ralph B. Peck Lecture Presentation.
- Brocher T.M. et al. (2015): "The Mw 6.0 24 August 2014 South Napa earthquake". Seismological Research Letters; 86, 309-326.
- CALFED Science Program Independent Review Panel (2008). Review of the Delta Risk Management Strategy Phase I Report.
- Campbell K.W., Bozorgnia Y., (2014): "NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra". Eq. Spectra; 30,1087–1115.
- Chiou B.S.-J., Youngs R.R. (2014). "Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra" Eq. Spectra; 30, 1117–1153.
- Delta Risk Management Strategy (DRMS) (2008): "Levee vulnerability, Tech. Memo". Delta Risk Manag. Strateg. Final Phase 1.
- Delta Risk Management Strategy (DRMS), URS Corporation, J. R. Benjamin & Associates, Inc. (2009): " Phase 1 Risk Analysis Report". Delta Risk Management Strategy Report, Phase 2 Report, prepared for California Department of Water Resources.
- Deverel S.J., Bachand S., Brandenberg S.J., Jones C.E., Stewart J.P., Zimmaro P. (2016): "Factors and processes affecting Delta levee system vulnerability". San Francisco Estuary and Watershed Science, Accepted for publication.
- Erdem J.E., Boatwright J., Fletcher J.B. (2016): "Ground-Motion Attenuation for the South Napa Earthquake in the Sacramento-San Joaquin Delta, California". Delta Independent Science Board (ISB) Meeting, UC Davis, 14-15 July.
- Field E.H. et al. (2014) "Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) The time-independent model". Bull Seismol Soc Am; 104:1122-1180
- GEER (2016): "Engineering Reconnaissance following the 2016 M6.0 Central Italy Earthquake: Ver 1", GEER Association Report No. GEER-050.
- Petersen M.D., Mueller C.S, Moschetti M.P., Hoover S.M., Llenos A.L., Ellsworth W.L., Michael A.J., Rubinstein J.L., McGarr A.F., Rukstales K.S. (2016): "Seismic-Hazard Forecast for 2016 Includin Induced and Natural Earthquakes in the Central and Eastern United States". Seismological Research Letters; 87, 1327-1341.
- The World Bank group: https://www.gfdrr.org (last accessed 11/08/2016)
- Veiligheid Nederland in Kaart 2 (VNK) Project Office (2015): "The national flood risk analysis for the 843 Netherlands, final report". VNK Project.
- Working Group On California Earthquake Probabilities (WGCEP) (2003): "Earthquake Probabilities in the San Francisco Bay Region: 2002–2031". Open-File Report 03-214