RECLAMATION

Managing Water in the West

WINTER-RUN CHINOOK SALMON RESPONSES TO DROUGHT: IMPACTS ON POPULATION VIABILITY CRITERIA

Bay Delta Science Conference November 17, 2017

U.S. Department of the Interior Bureau of Reclamation

Acknowledgements

Brood Year 2013 Winter-run Chinook Salmon Drought Operations and Monitoring Assessment

town where

Barbara Byrne Chad Dibble Brett Harvey Rachel Johnson Ken Kundargi **Dan Kratville Bill Poytress Kevin Reece Andrew Schultz** Jim Smith Jeff Stuart Davis van Rijn **Garwin Yip**

Collaborative Multiagency Technical Effort

Brood Year 2013 Winter-run Chinook Salmon Drought Operations and Monitoring Assessment

- Identified hypothesized drought effects
- Assemble monitoring data from Comparative Period (BY 2007-2012)
- Analyze and Synthesize these Impacts
- Recommended Monitoring Improvements

Evaluate Drought Cohort Metrics to Assess Changes in Viability

Abundance

- Escapement
- Proportion hatchery

Productivity

- Egg-to-fry survival
- Recruits/ female

Diversity

- Presmolt/ smolts
- Condition

Spatial Structure

- River migration duration
- Delta rearing duration

Did changes in abundance during the drought impact risk of extinction?

	Risk of Extinction			
Criterion	High	Moderate	Low	
Extinction risk from PVA	> 20% within 20 years	> 5% within 100 years	< 5% within 100 years	
	– or any ONE of –	– or any ONE of –	– or ALL of –	
Population size ^a	$N_e \leq 50$	$50 < N_e \le 500$	$N_e > 500$	
	-or-	-or-	-or-	
	$N \le 250$	$250 < N \le 2500$	N > 2500	
Population decline	Precipitous decline ^b	Chronic decline or depression ^c	No decline apparent or probable	
Catastrophe, rate and effect ^d	Order of magnitude decline within one generation	Smaller but significant decline ^e	not apparent	
Hatchery influence ^f	High	Moderate	Low	

^a Census size N can be used if direct estimates of effective size N_e are not available, assuming $N_e/N = 0.2$.

b Decline within last two generations to annual run size ≤ 500 spawners, or run size > 500 but declining at ≥ 10% per year. Historically small but stable population not included.

^c Run size has declined to < 500, but now stable.

^d Catastrophes occuring within the last 10 years.

^e Decline < 90% but biologically significant.

^f See Figure 1 for assessing hatchery impacts.

Abundance

- <2,500 in 1 gen.
- Moderate Risk
- Decline >10%/yr.
- Moderate Risk

Decline

G2: -26% to 88%

G1: -36% to 23%

GrandTab 2015, CDFW 2016

Abundance

Proportion hatchery

Moderate Risk

Did changes in productivity during the drought impact risk of extinction?

	Risk of Extinction				
Criterion	High	Moderate	Low		
Extinction risk from PVA	> 20% within 20 years	> 5% within 100 years	< 5% within 100 years		
	or any ONEof -	– or any ONE of –	– or ALL of –		
Population size ^a	$N_e \leq 50$	$50 < N_e \le 500$	$N_e > 500$		
	-or-	-or-	-or-		
	$N \le 250$	$250 < N \le 2500$	N > 2500		
Population decline	Precipitous decline ^b	Chronic decline or depression ^c	No decline apparent or probable		
Catastrophe, rate and effect ^d	Order of magnitude decline within one generation	Smaller but significant decline ^e	not apparent		
Hatchery influence ^f	High	Moderate	Low		

^a Census size N can be used if direct estimates of effective size N_e are not available, assuming $N_e/N = 0.2$.

b Decline within last two generations to annual run size ≤ 500 spawners, or run size > 500 but declining at ≥ 10% per year. Historically small but stable population not included.

^c Run size has declined to ≤ 500, but now stable.

d Catastrophes occuring within the last 10 years.

^e Decline < 90% but biologically significant.

f See Figure 1 for assessing hatchery impacts.

Productivity

- Recruits/ female
- High Risk

USFWS 2014, B. Poytress pers comm, CDFW 2016

	BY 2003-12	G3 (BY07-09)	G2(BY 10-12)	G1 (BY13-15)
Recruits/ female	Av. = 1350	Av.=1290	Av.=1834	Av.=408
Max. Decline during generation	+48% to -93%	-14%, No decline	93%	240%

Higher temperatures impacted egg survival

Higher temperatures impacted egg survival

Diversity

- Condition Metrics
- Low/ Moderate risk

	BY 2003-12	BY 2013	BY 2014	BY 2015
% presmolt /smolt	Av. = 20% (10% to 47%)	59%	38%	43%
Salmonid Disease State (Foott 2013,2014,2015)	Not monitored	Spring: Low-Mod prevalence (7-64%)	Spring: Moderate prevalence (63-77%)	Fall: High prevalence (80-82%)

Did changes in life history diversity and condition occur during the drought?

Warm temperatures- faster growth Lower flows- longer rearing

WRCS drought cohorts reared above RBDD longer

Juvenile Winter Chinook Migration Timing Characteristics, Red Bluff Diversion Dam

Brood Year	Passage Dates						Middle		
	First	5%	10%	50%	90%	95%	Last	80% Days	Run Size
2015	2015-7-6	2015-9-1	2015-9-11	2015-10-6	2015-12-11	2015-12-15	2016-4-28	92	328411
2014	2014-7-7	2014-8-27	2014-8-30	2014-9-27	2014-11-19	2014-12-2	2015-5-21	82	272227
2013	2013-7-9	2013-9-9	2013-9-16	2013-10-28	2014-1-16	2014-2-10	2014-5-8	123	1416704
2012	2012-7-16	2012-9-11	2012-9-17	2012-10-20	2012-11-22	2012-12-13	2013-5-4	67	1186292
2011	2011-8-3	2011-9-15	2011-9-19	2011-10-7	2011-12-1	2011-12-13	2012-4-18	74	742344

SacPAS

BY13-15 spatial structure metrics Compared to BY07-12 average

BY 13:
Reared longer in lower river
Quickly migrated through
Delta

BY 14 & 15:

Reared shorter in lower river Slowly migrated through Delta

Reduction in Viability Due to Drought

<u>Abundance</u> – Increased Risk due to reductions during drought years for generational metrics

Productivity- Increased Risk due to order of magnitude decline during drought years for cohort metrics

Diversity- Increased Risk due to cohort metrics

Spatial Structure- Greater variation in rearing and migration metrics, hypothesized to be related to drought conditions

RECLAMATIC

Reduced Winter-run Viability Impacting Fish and Water Management

RPA Adjustment Process

Adjusted Temperature Management Planning and Implementation Process

- Salmon in the Spotlight
- Salmon Action Plan
- •CVPIA
- •IEP

- Upper Sacramento River restoration
- Adaptive Resource Management
- New Monitoring

Reinitiation of Consultation on CVP/SWP