Integrating hydrodynamics and fish physiology to estimate entrainment rates for the Fremont Weir notch

5.60526 5.21053 4.81579 4 4210 4.02632 3.63158 3.23684 2 84211 2,44737 2 05263 1.65789 1.26316 0.86842 0.473684 0.078947 -0.315789 -0.710526 1.10526

State of California Department of Water Resources

U.S. Department of the Interior Bureau of Reclamation

US Army Corps of Engineers BUILDING STRONG_®

Approach

- Numerical "mock-up" of a the Fremont Weir reach and alternative notch designs – hydraulic and topographic models.
- Compare fish movement simulations with measured data from 2015.
- Run calibrated fish movement model for 9 separate notch scenarios and estimate relative entrainment rates.

Fish Behavior Configurations

ONG®

Central Shelf 6,000 cfs

Play video

Entrainment estimates

ALT2 – West - 6K - Intake

Differences between alternatives

- Entrainment estimates vary across alternatives good for planning.
- Larger notch flows result in highest entrainment
- Outside bend locations have higher entrainment estimates than straight sections.
- Intake style notch have higher entrainment rates than shelves.
- Alternative 1 and 2 have highest entrainment rates.

Animation Alternative 5

ELAM – Fish movement model

- Developed in Pacific Northwest using 47 data sets
- Extended to other rivers including Sacramento and Stanislaus
- Multiple behaviors utilized only one behavior and two parameters
- Calibrated to Fremont Weir WRCS and LFCS for 2015
- Awaiting LFCS 2016 results

BUILDING STRONG_®

Measured Fish Movement (Steel et al. 2016)

- 2d analysis of 250
 winter and 250 late fall
 run Chinook at
 Fremont weir under
 low flow conditions
- Paired release
- No significant differences between winter and late fall run fish

Spatial distribution

White = measured fish locations Orange = modeled fish locations

Fremont weir

Velocity Magnitude

.5

0.9

0.8

0.7

0.6

0.5

0.3

0.2

4291550 4291500

615500 615620 615680 615800 615920 615980

Observed and simulated movement speeds

Modeled

Measured

Next steps

- Complete remaining 2D model runs for alternatives
- Assist with design process and select preferred alternative for further design
- Construct and evaluate assess accuracy

Thank you

