

#### V ANCHOR QEA

#### In Situ Control of Methylmercury Production in Sediments by Redox-Buffering Mineral Amendments

Dimitri Vlassopoulos<sup>1</sup>, Masa Kanematsu<sup>1</sup>, Jessica Goin<sup>1</sup>, Alex Leven<sup>2</sup>, Elizabeth Henry<sup>1</sup>, David Glaser<sup>1</sup>, and Peggy O'Day<sup>2</sup>

2016 Bay-Delta Science Conference

1: Anchor QEA LLC 2: University of California Merced

## Hg Biogeochemical Cycle





## Biogeochemical Redox Ladder and Hg Methylation

- Ability of microorganisms to methylate Hg linked to possession of *hgc*AB gene cluster
- Present in sulfate-reducing bacteria, as well as some ironreducing and methanogenic bacteria
- To date *hgc*AB gene <u>not</u> found in any manganese-reducers, denitrifiers or aerobic bacteria

[Gilmour et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 47(20): 11810-20].



Mercury Methylation



### Can Sediment Redox Buffering by Manganese Oxides Suppress MeHg Production?





### Sediment-Water Slurry Tests

- Investigate effect of MnO<sub>2</sub> on MeHg production in sediment following addition of:
  - labile DOC (acetate, 40 mg/L C)
  - available Hg (HgCl<sub>2</sub>, 25 mg/kg)
- Triplicate sediment (150g) + water (500 mL) slurries:
  - control (sediment only)
  - amended (+MnO<sub>2</sub>)
- Incubated under N<sub>2</sub> atmosphere in the dark, sampled for THg, MeHg, solution chemistry
- Microbial activity/structure examined by respirometry and qPCR

#### Sediment

| Analyte               | Result (n=3) | SD    |
|-----------------------|--------------|-------|
| Total Mercury (mg/kg) | 94.8         | 8.9   |
| TOC (%)               | 8.52         | 0.08  |
| lron (mg/kg)          | 36,600       | 1,800 |
| Manganese (mg/kg)     | 12,700       | 924   |
| Sulfide (mg/kg)       | 1.7          | 0.07  |
| Total Solids (%)      | 30.0         | 0.2   |

#### Porewater

|      | Analyte           | Result |
|------|-------------------|--------|
|      | FTHg (ng/L)       | 22,900 |
|      | FMeHg (ng/L)      | 5.86   |
|      | Calcium (mg/L)    | 106    |
|      | Magnesium (mg/L)  | 171    |
|      | Potassium (mg/L)  | 57.7   |
|      | Sodium (mg/L)     | 1,420  |
| -303 | Chloride (mg/L)   | 2,870  |
| 100  | Sulfate (mg/L)    | 355    |
|      | Alkalinity (mg/L) | 126    |
|      | Nitrate-N (mg/L)  | 1.69   |
|      | Manganese (mg/L)  | 0.017  |
|      | Iron (mg/L)       | < 0.02 |
|      | Sulfide (mg/L)    | 0.04   |
|      | DOC (mg/L)        | 6.2    |

09721



#### **Slurry Test Results**

- MeHg in MnO<sub>2</sub>-amended microcosms lower than controls by 92 to >99%
- MnO<sub>2</sub> reduced net methylation (%MeHg/THg) by 1-2 orders of magnitude relative to controls
- Redox poising by MnO<sub>2</sub> suppresses MeHg production under conditions otherwise favorable for methylation (sulfate, labile organic matter, available Hg)





#### Respirometry

- Sediment ± MnO<sub>2</sub> (pyrolusite or birnessite) microcosms inoculated with culture medium (peptone-yeastacetate), incubated under N<sub>2</sub> in the dark
- Continuous monitoring of CO<sub>2</sub> concentration in chamber headspace
- All microcosms showed significant CO<sub>2</sub> production due to microbial activity
- Higher CO<sub>2</sub> production in MnO<sub>2</sub>amended microcosms
- MnO<sub>2</sub> amendment of sediment stimulated microbial activity while reducing MeHg production







#### Microbial Community Census

- PCR and DNA sequencing -phylogenetic composition and major genera present
- Treated and untreated microcosms had similar total eubacterial counts and community composition at the Class level
- Mix of soil and marine bacteria ranging from aerobic to methanogenic
- Dominated by fermentative and anaerobic bacteria
- Iron and manganese reducers present in both control and amended sediment

#### Phylogenetic Class Distribution



1.0E+06

Sediment Control



Sediment + Pyrolusite

Sediment + Birnessite

### Aquarium Mesocosms

- Are MnO<sub>2</sub> amendments effective at suppressing MeHg under more realistic application conditions?
- How long are amendments likely to be effective?
- Aquarium mesocosm tests:
  - Aerated water column
  - 20 cm sediment column
  - MnO<sub>2</sub> added directly to upper sediment layer or applied on top of sediment in a thin layer reactive cover
  - Controls: sediment only and thin layer sand without amendments



# Aquarium Microcosm Setup

- Two MnO<sub>2</sub> amendments tested:
  - Pyrolusite (granular, mined)
  - Birnessite (powder, synthesized)
- Two configurations:
  - Direct addition to upper 5 cm of sediment (5 wt%)
  - Mixed in thin layer sand (5 cm, 5 wt%)
- Total of six mesocosms
- Measurements:
  - Overlying water monitored for pH, ORP, SC, Fe, Mn, SO<sub>4</sub>, H<sub>2</sub>S
  - Porewater and overlying water sampled for MeHg and THg (in replicate)
  - Sediment redox profiles by voltammetry
  - MnO<sub>2</sub> transformation over time (XANES)





Overlying Water

MnO<sub>2</sub> Mixed w/Sediment

Sediment

Overlying Water MnO<sub>2</sub> + Sand

Sediment



## **Overlying Water Quality Monitoring**

0.5



#### Direct MnO<sub>2</sub> Addition to Sediment





#### Thin Layer Cover Over Sediment



Arrow indicates date of sampling of porewater for THg/MeHg and voltammetry profiling Horizontal dashed line indicates concentration in site water

**In Situ Control of Methylmercury Production in Sediments** 2016 Bay-Delta Science Conference



#### MeHg in Mesocosm Porewater and Overlying Water

- Control tank shows diffusion-reaction depth profile for MeHg
- Birnessite and pyrolusite treatments show reduced MeHg in amended sediment porewater (0-5 cm) and overlying water; ~90% lower than underlying sediment porewater (10-15 cm)
- Sand had lower porewater MeHg concentrations than control, suggests reduced MeHg production, likely due to depletion of sulfate over time
- Birnessite and pyrolusite amended sand reduced both MeHg and THg in overlying water, mixed results for amended sediment porewater 0-5 cm porewater



#### Direct MnO<sub>2</sub> Addition to Sediment



## Effect of MnO<sub>2</sub> on Net MeHg Production

 Reduction in net methylation (as indicated by %MeHg/THg) measured in 0-5 cm porewater relative to control microcosm at 4 months:



|                  | Pyrolusite | Birnessite | Sand Only |
|------------------|------------|------------|-----------|
| Direct Addition  | 69%        | 81%        | -         |
| Thin Layer Cover | 66%        | 89%        | 65%       |





# Insights from Redox Profiles (Voltammetry) Direct MnO<sub>2</sub> Addition

- Little penetration of O<sub>2</sub> in sediment (<1 cm)</li>
- Control microcosm showed development of Fe(II) and H<sub>2</sub>S (indicators of iron and sulfate reduction) very close to surface (~ 1 cm)
- Both pyrolusite and birnessite inhibited sulfate reduction (no H<sub>2</sub>S detected within treatment zone)



Concentration ( $\mu$ M) or FeS Current (nA)



# Insights from Redox Profiles (Voltammetry) Thin Layer Cover Sand

- O<sub>2</sub> penetration to base of sand layer (low O<sub>2</sub> demand)
- Less O<sub>2</sub> penetration in MnO<sub>2</sub>-amended sand
- No H<sub>2</sub>S detected within sand layer in all 3 microcosms
- Birnessite seems to have a greater depth of influence on redox than pyrolusite



#### Concentration ( $\mu$ M) or FeS Current (nA)



### Transformation of MnO<sub>2</sub> Amendments with Time

- Mn K-edge XANES used to monitor changes in solid phase manganese speciation over time
- Mn speciation in unamended sediment is predominantly Mn(II), present as rhodochrosite and/or adsorbed species
- In direct addition microcosms, changes in Mn XANES spectra over time indicate partial conversion of original pyrolusite and birnessite to Mn(III) and mixed Mn(II/III) oxides and rhodochrosite





### Transformation of MnO<sub>2</sub> Amendments with Time

- In thin layer cover application, Mn XANES spectra show that Mn mineralogy is largely unchanged from original pyrolusite or birnessite over 10 months of microcosm operation
- Contrast with underlying sediment in which Mn is predominantly present as rhodochrosite and/or adsorbed Mn(II)





# Transformation of MnO<sub>2</sub> with Time



- MnO<sub>2</sub> converted to Mn(II/III) oxides and rhodochrosite over time
- Redox-buffering Mn phases persist for at least 10 months
- Bulk of added Mn retained in sediment in this system
- Potential for periodic (seasonal and/or tidal) regeneration of MnO<sub>2</sub> by rhodochrosite oxidation in field application



#### Summary and Conclusions

- Batch slurry experiments document effectiveness of MnO<sub>2</sub> amendments in suppressing net MeHg production in laboratory sediment microcosms
- MnO<sub>2</sub> amendments poise redox and shift predominant microbial activity from sulfate reduction to manganese reduction and suppressing Hg methylation
- In mesocosms, direct addition of MnO<sub>2</sub> amendment to sediment or in thin layer amended sand cover reduced net MeHg production by factor of 3 for pyrolusite and 4-5 for birnessite
- MnO<sub>2</sub> added to sediment was converted to Mn(II/III) oxides and Mn carbonate over time (months) but appears to be retained in solid phase potential for in situ regeneration of MnO<sub>2</sub> through tidal and/or seasonal cycling in field application
- MnO<sub>2</sub> in thin layer sand application converted more slowly than when directly added to sediment – longer effective lifetime

