Applied science and the rapidresponse genetic assignment of fish trapped at Keswick Dam

Christian Smith, John Rueth and Jennifer Von Bargen

Sacramento River Winter Run Chinook salmon

- 1989 propagation at existing facility (Coleman NFH)
- Early to mid 1990s collaboration between USFWS, UCDavis and Arizona State University produces hatchery protocols to minimize negative genetic impacts of spawning and identifies need for rapid-response genetic ID
- 1998 propagation at dedicated facility (Livingston Stone NFH)

Information needs

- Protocol for accurate run identification of fish trapped at Keswick
- Assignment of individuals, not mixture proportions
- Must be done rapidly enough that decisions to hold or release fish could be made based on results

Publications featuring genetic assignment tests

Final Report
 January 1998 - September 2001

GENETIC MAINTENANCE OF HATCHERY- AND NATURAL-ORIGIN WINTER-RUN CHINOOK SALMON

COOPERATIVE AGREEMENT
 ANADROMOUS FISH RESTORATION PROGRAM

University of California-Davis/U.S. Fish \& Wildlife Service

$1448-11330-97-\mathrm{J} 194$	$1 / 1 / 98-12 / 31 / 98$
$1448-11330-97-\mathrm{J} 045$	$1 / 1 / 99-12 / 31 / 99$
$1448-11330-97-\mathrm{J} 045$	$1 / 1 / 00-12 / 31 / 00$
$1448-11330-97-\mathrm{j} 094$	$1 / 1 / 01-09 / 30 / 01$

Contributers:
Principal Investigators: Dennis Hedgecock (1998-2001)
Michael Banks (1998)
Research Associate: Vanessa Rashbrook (1998-2001)
Postgraduate Researchers: Heather Fitzgerald (1998)
Stephen Sabatino (1999-2001)
Dimitri Churikov (2001)
Computer Programmer: Will Eichert (1999-2001)
Subcontract:
Phil Hedrick (Arizona State University) (1998-2001)

Changes in the process

94 SNPs

7 Microsatellites

Resolution to ID Winter run

P (winter-run)

7 microsatellites
95 SNPs

Assignment probability
Assignment probability

Sample numbers (blue bars) and project costs (yellow line)

Heterozygosity

Linkage disequilibrium

Current challenges

1. Genetic broodstock management changes? Captive brood, matrix spawning, ...
2. Contribution to naturally-spawning population component
3. Impact to Spring Run Chinook salmon?

Current challenges

1. Genetic broodstock management changes? Captive brood, matrix spawning, ...
2. Contribution to naturally-spawning population component
3. Impact to Spring Run Chinook salmon?

Current challenges

1. Genetic broodstock management changes?

Captive brood, matrix spawning, ...

Current challenges

1. Genetic broodstock management changes?

Captive brood, matrix spawning, ...
2. Contribution to naturally-spawning population component

Contribution to NOR

- Large and unknown proportion of parents not sampled
- DNA from carcass samples yielded high PCR failure rate

Current challenges

1. Genetic broodstock management changes? Captive brood, matrix spawning, ...
2. Contribution to naturally-spawning population component
3. Impact to Spring Run Chinook salmon ?

Impact to spring run?

Adults at Red Bluff Diversion Dam

Phenotypic Assignment	Genetic Assignment		
	Spring	Fall	Winter
Spring	11	14	0
Fall	19	279	1
Winter	13	17	9

Juveniles on the American River*

Phenotypic Assignment	Genetic Assignment		
	Spring	Fall	Winter
Spring	4	141	4
Fall	0	22	0
Winter	1	0	9

*Data provided by Doug Threloff, USFWS

Impact to spring run?

- FRH spring look more like baseline fall than baseline spring using the markers described here
- Ongoing crossing between fall run and spring run in some tributaries

Conclusions

- Rapid response protocol developed at BML provided a solution which met USFWS needs for many years, and a model which has been broadly applied internationally
- Nearly two decades of data suggest no loss of genetic diversity in WRCS, but do indicate risk of over-representation of some families, characteristic of many supplemented populations.

Acknowledgements

Initial project development (1997-2003):
UC Davis, Arizona State University, Coleman NFH

Current (2004-present):
Livingston Stone NFH, Coleman NFH, Red Bluff FWO, Abernathy Fish Technology Center

In collaboration with:
USBR, CDFW, NOAA Fisheries

The findings and conclusions presented here are those of the authors and do not necessarily reflect the views of the United States Fish and Wildlife Service

Reducing relatedness among hatchery spawners

Relatedness

Linkage disequilibrium

P (spring run)

7 microsatellites
95 SNPs

Assignment probability
Assignment probability

