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Coupled physical-biological models
• Physical models

– Spatially explicit 1D – 3D hydrodynamics

• Biological models
– Add “fishy” behaviors to neutrally buoyant particles

• E.g., swimming velocity, holding during day

• Conduct simulation experiments
– Water management actions
– Patterns from fish behaviors and hydrodynamics



How Do We Determine Values 
of Behavioral Parameters?

• Theory
– Hypotheses about fish behavior

• Trial and Error
– “Pattern matching” to observed data

• Problems:
– No uncertainty in parameter estimates
– Somewhat subjective



Goals
• Develop methods to fit models to observed data

• Methods should be general
– Applicable to any model

• Provide parameter estimates + uncertainty

• Allow assessment of different model structures



Challenges
• Models are computationally burdensome

– Traditional optimization routines take too long

• Models are stochastic
– Direct search methods won’t work
– Traditional stochastic methods take too long

• Two potential solutions
– Gaussian process model + MCMC (this talk)
– Particle Swarm Optimization (next talk)



Gaussian Process Models
• Distance-weighted interpolation
• Uses multivariate normal distribution

– e.g., Kriging

Source: 
http://www.gitta.info/C
ontiSpatVar/en/image/
kriging.jpg
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Developing
Gaussian Process Models (GPM)
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Calibration using
Gaussian Process Models (GPM)
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Application to DSM2-ePTM
• 7 parameters (per reach)
• Swimming behaviors

– Swimming velocity (mean + SD)
– Daytime holding probability
– Velocity holding threshold 

• Selective tidal stream transport
– Probability of mis-assessing downstream direction

• Function of mean velocity relative to SD velocity

• XT Survival model (Anderson et al. 2005)
– λ, mean distance between predator-prey encounters
– ω, random encounter velocity



Acoustic Telemetry Data

– USFWS (Delta Action 8 study)
– Late-fall Chinook salmon
– Vemco acoustic telemetry
– 1,583 Acoustic tagged fish
– 4 Years (2007 – 2010)
– 8 unique release groups
– 9 reaches
– Migrated between December and February
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Gaussian Process Model
• 2000 parameter sets

– Run for each reach and release
– 144,000 ePTM model runs!

• Ran in parallel on Amazon cloud

• Model outputs for each reach and release
– Survival probability
– Proportion of fish in 20 travel time bins
– Flexible distribution shapes (e.g., bi-modal)



Likelihood Function
• Multistate mark-recapture model

– Perry et al. (2010)
– Survival, detection, routing

• Multinomial distribution for travel times
– Proportion of fish in 20 travel time bins
– Observed number in each bin



Compare Two Fitted Models
• “Simple” Model

– Daytime swim probability and Hold Threshold
• Turned Off

– All other parameters set equal among reaches
• “Complex” Model

– Hold threshold turned off
– Daytime swim probability and ω

• Different for riverine, transitional, and tidal reaches
– Probability of mis-assessing direction
– All other parameters reach-specific

• Compare using WAIC



Model Selection
• “Simple” Model

– 5 parameters
– WAIC = 505,988

• “Complex” Model
– 34 parameters
– WAIC = 423,856

• Difference of 82,131
• Complex model is better fit



Posterior Distributions
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Posterior Distributions
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λ, Mean distance (km) between predator-prey encounters
Median λ: 52 – 287 km



Conclusions
• Advantages

– Fully parametric
– Posterior distributions of parameters
– Full accounting of uncertainty due to:

• PTM stochasticity
• Error due to GPM interpolation of PTM
• Sampling uncertainty in observed data

• Disadvantages
– Many steps in process
– Not “off the shelf”
– Not using PTM directly
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