

Using Gaussian Process Models to Fit an Enhanced Particle Tracking Model to Acoustic Telemetry Data of Juvenile Salmon

> Russell W. Perry, Adam C. Pope, Doug Jackson, and Vamsi Sridharan

U.S. Department of the Interior U.S. Geological Survey Bay-Delta Science Conference 15-17 November 2016

Coupled physical-biological models

- Physical models
 - Spatially explicit 1D 3D hydrodynamics
- Biological models
 - Add "fishy" behaviors to neutrally buoyant particles
 - E.g., swimming velocity, holding during day
- Conduct simulation experiments
 - Water management actions
 - Patterns from fish behaviors and hydrodynamics

How Do We Determine Values of Behavioral Parameters?

• Theory

- Hypotheses about fish behavior

- Trial and Error
 - "Pattern matching" to observed data
- Problems:
 - No uncertainty in parameter estimates
 - Somewhat subjective

Goals

- Develop methods to fit models to observed data
- Methods should be general
 Applicable to any model
- Provide parameter estimates + uncertainty
- Allow assessment of different model structures

Challenges

- Models are computationally burdensome

 Traditional optimization routines take too long
- Models are stochastic
 - Direct search methods won't work
 - Traditional stochastic methods take too long
- Two potential solutions

 Gaussian process model + MCMC (this talk)
 Particle Swarm Optimization (next talk)

Gaussian Process Models

- Distance-weighted interpolation
- Uses multivariate normal distribution

– e.g., Kriging

Probability of day-time migration

Source: http://www.gitta.info/C ontiSpatVar/en/image/ kriging.jpg

Developing Gaussian Process Models (GPM)

Calibration using Gaussian Process Models (GPM)

Application to DSM2-ePTM

- 7 parameters (per reach)
- Swimming behaviors
 - Swimming velocity (mean + SD)
 - Daytime holding probability
 - Velocity holding threshold
 - Selective tidal stream transport
 - Probability of mis-assessing downstream direction
 - Function of mean velocity relative to SD velocity
- XT Survival model (Anderson et al. 2005)
 - $-\lambda$, mean distance between predator-prey encounters
 - $-\omega$, random encounter velocity

Acoustic Telemetry Data

- USFWS (Delta Action 8 study)
- Late-fall Chinook salmon
- Vemco acoustic telemetry
- 1,583 Acoustic tagged fish
- -4 Years (2007 2010)
- 8 unique release groups
- -9 reaches

- Migrated between December and February

Reaches

For each reach:

- Survival probability
- Travel time distribution

45

6

12 miles

12 km

7

7

8

Gaussian Process Model

- 2000 parameter sets
 - Run for each reach and release
 - 144,000 ePTM model runs!
 - Ran in parallel on Amazon cloud
- Model outputs for each reach and release
 - Survival probability
 - Proportion of fish in 20 travel time bins
 - Flexible distribution shapes (e.g., bi-modal)

Likelihood Function

- Multistate mark-recapture model
 - Perry et al. (2010)
 - Survival, detection, routing
- Multinomial distribution for travel times

 Proportion of fish in 20 travel time bins
 Observed number in each bin

Compare Two Fitted Models

- "Simple" Model
 - Daytime swim probability and Hold Threshold
 - Turned Off
 - All other parameters set equal among reaches
- "Complex" Model
 - Hold threshold turned off
 - Daytime swim probability and $\boldsymbol{\omega}$
 - Different for riverine, transitional, and tidal reaches
 - Probability of mis-assessing direction
 - All other parameters reach-specific
- Compare using WAIC

SGS

Model Selection

- "Simple" Model
 - 5 parameters
 - WAIC = 505,988
- "Complex" Model
 34 parameters
 - WAIC = 423,856
- Difference of 82,131
- Complex model is better fit

Posterior Distributions

Posterior Distributions

 $\lambda,$ Mean distance (km) between predator-prey encounters Median $\lambda:$ 52 – 287 km

Conclusions

Advantages

- Fully parametric
- Posterior distributions of parameters
- Full accounting of uncertainty due to:
 - PTM stochasticity
 - Error due to GPM interpolation of PTM
 - Sampling uncertainty in observed data
- Disadvantages
 - Many steps in process
 - Not "off the shelf"
 - Not using PTM directly