Using an individual-based model to explore survival of emigrating salmonids in the South Delta

Travis Hinkelman and Bradley Cavallo

Individual-Based Delta Passage Model

 Individual-based, discrete event simulation model

Individual-Based Delta Passage Model

- Individual-based, discrete event simulation model
- Written in R with web-based GUI

Individual-Based Delta Passage Model

- Individual-based, discrete event simulation model
- Written in R with web-based GUI
- Practical tool for simulation experiments

Individual-Based Delta Passage Model

- Individual-based, discrete event simulation model
- Written in R with web-based GUI
- Practical tool for simulation experiments
- Effects of water project operations, barriers, predation risk, etc.

Individual-Based Delta Passage Model

- Individual-based, discrete event simulation model
- Written in R with web-based GUI
- Practical tool for simulation experiments
- Effects of water project operations, barriers, predation risk, etc.
- Number of juvenile salmonids arriving at Chipps Island or export facilities

Reaches

- 34 reaches representing key migratory routes
- Starting reaches

Migration Rate

- Migration rates drawn from Gamma distribution
 - Value drawn when fish enters new reach
- Gamma distribution defined by mean and variance
 - Properties of reach

- Distance (gauntlet)
 - Reach length
- Time (exposure)
 - Reach length/migration rate

$$S = \exp\left(-\frac{1}{\lambda}\sqrt{x^2 + \omega^2 t^2}\right)$$

Survival

XT Model

- Distance (gauntlet)
 - Reach length
- Time (exposure)
 - Reach length/migration rate

- Omega ($\omega = 1.8$)
 - Random encounter velocity

$$S = \exp\left(-\frac{1}{\lambda}\sqrt{x^2 + \omega^2 t^2}\right)$$

Anderson et al. 2005. Ecological Modelling

Survival

XT Model

- Distance (gauntlet)
 - Reach length
- Time (exposure)
 - Reach length/migration rate

- Omega ($\omega = 1.8$)
 - Random encounter velocity
- Lambda ($\lambda = 31-188$)
 - Distance between predator encounters

$$S = \exp\left(-\frac{1}{\lambda}\sqrt{x^2 + \omega^2 t^2}\right)$$

Anderson et al. 2005. Ecological Modelling

Survival

- XT model
 - Distance (reach length)
 - Time (reach length/migration rate)
 - Omega (random encounter velocity)
 - Lambda (distance between predator encounters)

Anderson et al. 2005. Ecological Modelling

Reach Properties

- Migration rate (km/day) mean and variance
- Distance between predator encounters (lambda; km)
- Random encounter velocity (omega; km/day)
- Reach length (km)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	

Mean

20

20

100

100

100

100

100

100

Reach

SAC1

SAC2

SAC3

Steam1

Steam2

SAC4

SAC5

SAC6

SAC7

SAC8

GEO

MOK

COL

MRV1

MRV2

MRV3

ORV1

ORV2

ORV3

ORV4

100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	

Variance Lambda Omega Length

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

1.80

41.00

2.60

8.60

7.20

12.20

1.00

19.80

8.50

18.20

6.20

20.30

6.10

2.50

5.00

10.20

3.10

24.70

0.80

15.60

24.90

188

188

188

101

101

96

96

84

84

84

66

66

36

36

36

36

36

36

36

36

15 junctions on key migratory routes

- 15 junctions on key migratory routes
- Delta Simulation Model II (DSM2)

- 15 junctions on key migratory routes
- Delta Simulation Model II (DSM2)
 - 15-min flow values
 - 61 days of representative tides
 - 3,978 combinations of barriers, inflow, and exports

- 15 junctions on key migratory routes
- Delta Simulation Model II (DSM2)
 - 15-min flow values
 - 61 days of representative tides
 - 3,978 combinations of barriers, inflow, and exports
- Override flow-based routing

	Junction	Override	Probability
1	COL		0.00
2	CVP	•	1.00
3	DCC		0.00
4	GEO		0.00
5	HOR	•	1.00
6	MOK		0.00
7	MRV		0.00
8	ORV		0.00
9	RRD		0.00
10	SJR		0.00
11	SS1		0.00
12	SS2		0.00
13	SWP		0.00
14	TMS		0.00
15	TRN		0.00

	Junction	Override	Probability
1	COL	•	0.00
2	CVP		0.00
3	DCC		0.00
4	GEO		0.00
5	HOR	•	0.00
6	MOK		0.00
7	MRV	•	0.00
8	ORV		0.00
9	RRD		0.00
10	SJR		0.00
11	SS1		0.00
12	SS2		0.00
13	SWP	0	0.00
14	TMS		0.00
15	TRN	•	0.00

Survival and Exports

Survival and Exports

Survival and Exports

Conclusion

Conclusion

Acknowledgments

- Russell Perry
- Tara Smith
- Yu Zhou

Individual-Based Delta Passage Model

- 15 junctions on key migratory routes
- Delta Simulation Model II (DSM2)
 - 15-min flow values
 - 61 days of representative tides
 - 3,978 combinations of barriers, inflow, and exports

Cavallo et al. 2015. Environ Biol Fish

- 15 junctions on key migratory routes
- Delta Simulation Model II (DSM2)
 - 15-min flow values
 - 61 days of representative tides
 - 3,978 combinations of barriers, inflow, and exports

Cavallo et al. 2015. Environ Biol Fish

- Whole facility efficiency
 - CVP only
 - Applied after routing probability
 - Probability that fish entrained
 - Fish not entrained migrate north in Old River
 - If CVP routing is overridden, then relationship not used

Discrete Event Simulation

- Continuous time, discrete events
- Event queue
- Fish traits
 - Alive
 - Arrived at Chipps
 - Migration trajectory
 - Migration rates in each reach

Event queue

	-	
event.time [‡]	event.type 🗦	id ‡
32.57920	route	46
32.58151	migrate	47
32.62865	route	41
33.13411	route	151
33.19192	migrate	54
33.19192	migrate	154
33.24126	route	38
33.40157	route	140
33.77194	route	152
33.81818	migrate	55

Fish traits

Rep [‡]	ID ‡	Alive ‡	Chipps ‡
1	1	1	1
1	2	0	0
1	3	0	0
1	4	0	0
1	5	1	1
1	101	0	0
1	102	0	0
1	103	0	0
1	104	1	1
1	105	0	0

Migration trajectory

			9		•		•		
ID ‡	Reach1 [‡]	Reach2 [‡]	Reach3 [‡]	Reach4 [‡]	Reach5 [‡]	Reach6 [‡]	Reach7 [‡]	Reach8 [‡]	Reach9
1	SAC1	SAC2	SAC3	SAC4	SAC5	SAC6	SAC7	SAC8	NA
2	SAC1	SAC2	SAC3	SAC4	SAC5	SAC6	NA	NA	NA
3	SAC1	SAC2	Steam1	NA	NA	NA	NA	NA	NA
4	SAC1	Sutter	NA	NA	NA	NA	NA	NA	NA
5	SAC1	Sutter	Steam2	SAC6	SAC7	SAC8	NA	NA	NA
101	SJR1	SJR2	NA	NA	NA	NA	NA	NA	NA
102	SJR1	SJR2	NA	NA	NA	NA	NA	NA	NA
103	SJR1	NA	NA						
104	SJR1	SJR2	SJR3	SJR4	SJR5	SJR6	SJR7	SJR8	SAC8
105	SJR1	SJR2	SJR3	SJR4	NA	NA	NA	NA	NA

Reach Usage Map

 $\lambda = 50$

Reach Usage Map

 $\lambda = 250$

