

Combining Models of the Critical Streak Line and the Cross-Sectional Distribution of Juvenile Salmon to Predict Fish Routing at River Junctions

Dalton J. Hance¹, Russell W. Perry¹, Adam Pope¹, Xiaochun Wang², Jon R. Burau³, Aaron Blake³

> ¹USGS Western Fisheries Research Center Cook, Washington ²California Department of Water Resources Sacramento, CA ³USGS California Water Science Center Sacramento, CA

U.S. Department of the Interior U.S. Geological Survey

A Quick Review: Migration Routing at Georgiana Slough

- Bio-Acoustic Fish Fence (BAFF)
 - Barrier reduced entrainment, but was only one factor
- Other Factors:
 - Streamflow Above Junction
 - Day/Night
 - Critical Streakline Position
 - Cross-stream Position of Fish

Perry et al. (2014) "Using a non-physical behavioral barrier to alter migration routing of juvenile Chinook salmon in the Sacramento-San Joaquin River Delta", River Research Applications, 30: 192–203.

Entrainment Zones and the Critical Streakline

Figure Courtesy Jon Burau; In: Perry et al. (2016) "Anadramous Salmonids in the Delta: New Science 2006 – 2016", San Francisco Estuary and Watershed Science, 14(2)

Predicting Entrainment: What is Necessary and Sufficient?

Objectives

- Estimate cross-sectional fish distribution upstream of junction
 - Environmental conditions
 - BAFF operations
- Estimate entrainment probability based on fish position relative critical streakline
- Identify whether cross-sectional fish distribution and critical streakline position are sufficient to predict entrainment probability

Methods: Study site

Methods: Fish Tagging and Release

Photo courtesy of AECOM

http://www.htisonar.com/acoustic_tags.htm

Methods: Data Preparation

- Removed all tracks suspected of predation
- Restricted analysis to detections within single transect upstream of junction
- Discharge, BAFF operations, and Night/Day assigned based on timestamp of detections

Methods: Beta Regression

≥USGS

$$f(y;\mu,\phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}, \quad 0 < y < 1,$$

Figure 1: Probability density functions for beta distributions with varying parameters $\mu = 0.10, 0.25, 0.50, 0.75, 0.90$ and $\phi = 5$ (left) and $\phi = 100$ (right).

Figure from Cribari-Neto F, Zeileis A (2010). "Beta Regression in R." Journal of Statistical Software, 34(2), 1–24. URL http://www.jstatsoft.org/v34/i02/

Methods: Beta Regression

 $y_i \sim B(\mu, \phi)$

y is cross-stream position normalized to (0,1) scale with 0 left-bank and 1 right-bank

$$logit(\mu_i) = X_i * \beta$$

• X are covariates of interest for mean term, β are corresponding parameters

$$\log(\phi_i) = Z_i * \gamma$$

 Z are covariates of interest for precision term, γ are corresponding parameters

Methods: Logistic Regression

 $F_i \sim \text{Bernoulli}(p_i)$

F is the fate of the i^{th} fish with 1 for fish entrained and 0 other

 $logit(p_i) = \alpha_0 + S_i * \alpha_1 + B_i * \alpha_2 + S_i * B_i * \alpha_3$

- α_0 is logit-mean probability of entrainment if BAFF is off and fish is on Sacramento side of streakline
- S_i is 1 if fish is on Georgiana side of streakline
- B_i is 1 if BAFF is on as fish approaches junction

Streakline = $\frac{Q_{Georgiana}}{Q_{Georgiana} + Q_{Sacramento Below}}$

Methods: Model Fitting

- Models fit in Stan (mc-stan.org)
- All combinations of covariates for mean and precision considered
- Model selection conducted using leave-one out crossvalidation
 - Model for precision term selected first using full model for mean term
- Model fit assessed using posterior predictive check

Results: Beta Regression - μ and ϕ

Parameter Estimates for the Best-fit Model				
μ		ф		
Variable	Estimate	Variable	Estimate	
Intercept (Day, Off)	≈0.5	Q	+	
Q	≈0.0			
BAFF	+			
Night	-			
Q*Night	+			

Results: Beta Regression

Juvenile Chinook River Position: Sacramento River above Georgian Slough 2500 CFS

Results: Critical Streakline Logistic Regression

Condition	Probability of Entrainment [90% CI]
BAFF Off, Sacramento Side	0.18 [0.15, 0.21]
BAFF On, Sacramento Side	0.10 [0.09, 0.11]
BAFF Off, Georgiana Side	0.62 [0.53, 0.71]
BAFF On, Georgiana Side	0.58 [0.52, 0.64]

Results: Combined Models

BAFF	Ν	Observed Entrained	Expected Entrained [90% CI]
On	1981	282	282 [258, 306]
Off	569	136	132 [118, 149]

Conclusions

- Cross-stream fish distribution upstream of the junction was previously found to be a major determinant of entrainment in Georgiana Slough
- Cross-stream fish distribution can be modelled based on environmental conditions, especially discharge
- Fish on different sides of streakline* have markedly different probability of entrainment

 Combining models of fish distribution and entrainment probability can predict overall entrainment rates
USGS

Acknowledgements

Thank you Questions?

