### Economic Modeling for Aquatic Invasive Weed Management in the California Bay-Delta

0

#### by

Karen M. Jetter Economist, UC Ag Issues Center

2016 Bay-Delta Science Conference November 16, 2016 Stockton, CA



- The presence of aquatic weeds causes a variety of damages to different agencies operating on the Delta.
  - Marinas can lose business when slips become weed choked or access to dry docks are blocked.
  - Mosquito and vector control districts may need to increase surveillance and testing of mosquitos for West Nile Virus in surface aquatic weed patches.



Cost of Invasvie Weed Control - California Bay Delta

|                                            | <u>2013</u> | <u>2014</u>       | <u>2015</u> |
|--------------------------------------------|-------------|-------------------|-------------|
| Public Agencies                            |             |                   |             |
| Port of Stockton                           | 50,602      | \$305,827         | \$168,000   |
| Bureau of Reclamation                      | 343,085     | \$832,803         | \$921,000   |
| Weed Control District - San Joaquin County | 222,506     | \$72 <i>,</i> 849 | \$36,940    |
| Weed Control District - Contra Costa       | 74,169      | 74,169 \$0        |             |
|                                            |             |                   |             |
| <u>Marinas</u>                             | 169,202     | \$576,206         | \$792,887   |
|                                            |             |                   |             |
| Total                                      | \$859,564   | \$1,787,685       | \$1,918,827 |



- To prevent these damages different agencies control both submerged and surface weeds.
- Bioeconomic model is being developed to estimate the costs of invasive weed management for different management alternatives.



• The economic objective is to minimize the costs over time t of management m by each agency j and each site k, and the cost of damages d for each agency and site.

$$\min_{t} \sum_{t} C_{t} = \sum_{j} \sum_{k} \sum_{m} C_{jkmt} + \sum_{j} \sum_{k} \sum_{d} C_{jkdt}$$

 For j = I,...J; k=I,...K; m=I,...M; d=I,...D and t=I,...T.



- The cost of weeds depend on
  - $^{\circ}\,$  the level of infestation at each site j,  $I_{_{jt}}\text{,}$  and
  - the quantity of inputs used, q, and cost of the inputs, w, used to manage weeds for a given infestation level.

$$C_{jkmt} = \Lambda_{jkmt} \left( \overline{w}_{jkm}, \overline{q}_{jkm}; I_{jt} \right)$$

• the value of damages for a given infestation level.

$$C_{jkdt} = \Lambda_{jkdt} \left( \overline{w}_{jkd}, \overline{q}_{jkd}; I_{jt} \right)$$



- For demonstration purposes we assume that there are two sites of interest.
- At each site j the level of infestation  $I_{jt}^{\phantom{\dagger}}$  in time t depends on
  - spread within the site based on the previous time period level of infestation
  - inflows from other regions
  - outflows to other regions



# Demonstration of economic model using a 2 site model.

- Site I is upstream from site 2 and has only outflows (for example this could be a nursery site). Assumed that 1.5% of existing level of weeds in site I flows out of the site.
- Site 2 is downstream from site I and has only inflows (for example this could be a slough where extra mosquito monitoring is needed). One percent of the outflows from site I flow into site 2.
- Spread within a site follows a logistic model.

$$I_{jt} = \frac{\alpha_j}{1 + \beta_j e^{-\mu_j I_{jt-1}}} = \frac{10}{1 + 10_j e^{-0.5I_{jt-1}}}$$

• Note that for the demonstration each site is identical.



#### Weeds infestations with no treatment



**Infestation With No** 

#### Infestation With No Treatment at site 2





- Simulation Objective: When should the infestation be managed so that total costs are minimized?
- Compare management and damage costs for infestations treated when they reach the following levels in each site:
  - 3 acres
  - 4 acres
  - 5 acres
  - 6 acres
  - 8 acres



# Results for minimum cost treatment simulation for each acreage assumption.

|          | 3 асі        | res     | 4 acres  |       | 5 acres |       | 8 acres |       |
|----------|--------------|---------|----------|-------|---------|-------|---------|-------|
| Weed Co  | ntrol Only   |         |          |       |         |       |         |       |
|          | Times        |         | Times    |       | Times   |       | Times   |       |
|          | Treated      | Cost    | Treated  | Cost  | Treated | Cost  | Treated | Cost  |
| Total    |              | 154     |          | 104   |         | 117   |         | 97    |
| Site 1   | 2            | 65      | 1        | 35    | 1       | 37    | 1       | 44    |
| Site 2   | 3            | 89      | 2        | 68    | 2       | 80    | 1       | 53    |
| Weed Cor | ntrol Plus D | )ownstr | eam Dama | iges  |         |       |         |       |
| Total    |              | 2,601   |          | 2,850 |         | 2,959 |         | 3,191 |
| Site 1   | 2            | 1,285   | 1        | 1,374 | 1       | 1,396 | 1       | 1,468 |
| Site 2   | 3            | 1,315   | 2        | 1,476 | 2       | 1,563 | 1       | 1,723 |



- The cost minimizing management decision is 8 acres.
- At this level of control the cost to managing invasive aquatic weeds is \$97.
- When both the management and damage costs are considered though the cost minimizing solution is 3 acres.
- At this level of control total costs are \$2,601: however, management costs are at their highest at \$154.



- In reality management decisions are typically undertaken with budget constraints in mind.
- For example, if we assume that total management costs cannot exceed \$120 a year, the budget-constrained cost minimization solution is to manage invasive weeds when infestations reach 4 acres.
- At this level management costs are \$104 and total costs are \$2,850.



# Conclusions

- Simplified model, but useful for showing how different economic and biological factors come into play when deciding the optimal management strategy.
- Model can be used both for determining the cost minimizing solution given existing technologies and for estimating the benefits of new technologies.
- Cost minimizing solution for one agency may not be the cost-minimizing solution for another or for society as a whole.



# Conclusions

- The optimal solution may not be a marginal change in management.
- The optimal solution may involve a shift to a choice when infestations are much smaller.
- Such a shift may require more resources to improve the timing of control.
- Solution becomes a social/political decision, in addition to a bioeconomic decision.