Economic Modeling for Aquatic Invasive Weed Management in the California Bay-Delta

by

Karen M. Jetter
Economist, UC Ag Issues Center

2016 Bay-Delta Science Conference
November 16, 2016
Stockton, CA

Economics of invasive aquatic weeds.

- The presence of aquatic weeds causes a variety of damages to different agencies operating on the Delta.
- Marinas can lose business when slips become weed choked or access to dry docks are blocked.
- Mosquito and vector control districts may need to increase surveillance and testing of mosquitos for West NileVirus in surface aquatic weed patches.

Economics of invasive aquatic weeds.

Cost of Invasvie Weed Control - California Bay Delta

	$\underline{2013}$	$\underline{2014}$	$\underline{2015}$
Public Agencies			
Port of Stockton	50,602	\$305,827	\$168,000
Bureau of Reclamation	343,085	\$832,803	\$921,000
Weed Control District - San Joaquin County	222,506	\$72,849	\$36,940
Weed Control District - Contra Costa	74,169	\$0	\$0
Marinas	169,202	\$576,206	\$792,887
Total	\$859,564	\$1,787,685	\$1,918,827

Economics of invasive aquatic weeds.

- To prevent these damages different agencies control both submerged and surface weeds.
- Bioeconomic model is being developed to estimate the costs of invasive weed management for different management alternatives.

Economics of invasive aquatic weeds.

- The economic objective is to minimize the costs over time t of management m by each agency j and each site k, and the cost of damages d for each agency and site.

$$
\min \sum_{t} C_{t}=\sum_{j} \sum_{k} \sum_{m} C_{j k m t}+\sum_{j} \sum_{k} \sum_{d} C_{j k d t}
$$

- For $\mathrm{j}=\mathrm{I}, \ldots \mathrm{J} ; \mathrm{k}=\mathrm{I}, . . \mathrm{K} ; \mathrm{m}=\mathrm{I}, \ldots \mathrm{M} ; \mathrm{d}=\mathrm{I}, \ldots \mathrm{D}$ and $\mathrm{t}=\mathrm{I}, \ldots \mathrm{T}$.

Economics of invasive aquatic weeds.

- The cost of weeds depend on
- the level of infestation at each site $\mathrm{j}, \mathrm{I}_{\mathrm{j}}$, and
- the quantity of inputs used, q, and cost of the inputs, w, used to manage weeds for a given infestation level.

$$
C_{j k m t}=\Lambda_{j k m t}\left(\bar{w}_{j k m}, \bar{q}_{j k m} ; I_{j t}\right)
$$

- the value of damages for a given infestation level.

$$
C_{j k d t}=\Lambda_{j k d t}\left(\bar{w}_{j k d}, \bar{q}_{j k d} ; I_{j t}\right)
$$

Demonstration of economic model

- For demonstration purposes we assume that there are two sites of interest.
- At each site j the level of infestation $I_{j t}$ in time t depends on
- spread within the site based on the previous time period level of infestation
- inflows from other regions
- outflows to other regions

Demonstration of economic model using a 2 site model.

- Site I is upstream from site 2 and has only outflows (for example this could be a nursery site). Assumed that I.5\% of existing level of weeds in site I flows out of the site.
- Site 2 is downstream from site I and has only inflows (for example this could be a slough where extra mosquito monitoring is needed). One percent of the outflows from site I flow into site 2.
- Spread within a site follows a logistic model.

$$
I_{j t}=\frac{\alpha_{j}}{1+\beta_{j} e^{-\mu_{j} I_{j i-1}}}=\frac{10}{1+10_{j} e^{-0.5 I_{j t-1}}}
$$

- Note that for the demonstration each site is identical.

Weeds infestations with no treatment

Infestation With No

Treatment at site I

Infestation With No

Treatment at site 2

Demonstration of economic model

- Simulation Objective: When should the infestation be managed so that total costs are minimized?
- Compare management and damage costs for infestations treated when they reach the following levels in each site:
- 3 acres
- 4 acres
- 5 acres
- 6 acres
- 8 acres

Results for minimum cost treatment simulation for each acreage assumption.

	3 acres		4 acres		5 acres		8 acres	
Weed Control Only								
	Times		Times		Times		Times	
	Treated	Cost	Treated	Cost	Treated	Cost	Treated	Cost
Total		154		104		117		97
Site 1	2	65	1	35	1	37	1	44
Site 2	3	89	2	68	2	80	1	53
Weed Control Plus Downstream Damages								
Total		2,601		2,850		2,959		3,191
Site 1	2	1,285	1	1,374	1	1,396	1	1,468
Site 2	3	1,315	2	1,476	2	1,563	1	1,723

Demonstration of economic model

- The cost minimizing management decision is 8 acres.
- At this level of control the cost to managing invasive aquatic weeds is $\$ 97$.
- When both the management and damage costs are considered though the cost minimizing solution is 3 acres.
- At this level of control total costs are $\$ 2,601$: however, management costs are at their highest at \$154.

Demonstration of economic model

- In reality management decisions are typically undertaken with budget constraints in mind.
- For example, if we assume that total management costs cannot exceed \$120 a year, the budget-constrained cost minimization solution is to manage invasive weeds when infestations reach 4 acres.
- At this level management costs are $\$ 104$ and total costs are $\$ 2,850$.

Conclusions

- Simplified model, but useful for showing how different economic and biological factors come into play when deciding the optimal management strategy.
- Model can be used both for determining the cost minimizing solution given existing technologies and for estimating the benefits of new technologies.
- Cost minimizing solution for one agency may not be the cost-minimizing solution for another or for society as a whole.

Conclusions

- The optimal solution may not be a marginal change in management.
- The optimal solution may involve a shift to a choice when infestations are much smaller.
- Such a shift may require more resources to improve the timing of control.
- Solution becomes a social/political decision, in addition to a bioeconomic decision.

