Describing Invertebrate Diversity Across Wetland Habitat Types

Development of recommendations for monitoring fish food resources in tidal wetland restoration sites

Restoring wetland for listed fish

- Fish Restoration Program to restore 8,000 acres
- Produce fish food
- Zooplankton and macroinvertebrates
- But how do you prove it?

Research Questions

- How do you quantify fish food production in vegetated wetlands?
- Is food different in different habitats?
- Is food different in different regions?

Sampler types

Leaf Pack

- Dried Schoenoplectus stems in a mesh bag
- Left tethered in wetland 4-6 weeks

Sweep net/ Dip net

- 5, one-meter sweeps with 500 micron mesh net
- Scraped sides of tules
- Collected any SAV and FAV broken off in net

Habitat types Emergent Floating **Rip-rapped** Submerged vegetation (EAV) vegetation channel bank Vegetation (SAV) (Schoenoplectus spp) (FAV) (Egeria densa) (Eichhornia crassipes)

Sweep net Leaf pack

- Sweep net - Leaf pack Sweep netLeaf packs

Sweep net

Leaf pack

Fish Restoration Program, 2016

Analysis

- Sort to lowest appropriate taxonomic level
- Compare total catch and richness with GLMM
- Compare community composition with PERMANOVA

Total Catch

Best model:

Catch ~ Sampletype*Habitat + Region + E(station)

Letters denote groups that are significantly different at the p<0.05 level.

Fish Restoration Program, 2016

Taxon Richness

Best model: Richness ~ Sampletype + Habitat + E(station)

Letters denote groups that are significantly different at the p<0.05 level.

Community Composition

Different Habitats

Different Regions

PERMANOVA results: F = 4.47, P = 0.001, R2 = 0.292

PERMANOVA results: F = 3.532, P = 0.002, R2 = 0.211

What's for dinner?

What's for dinner?

Fish Restoration Program, 2016

Image credit: Alison Furler

Something different for everyone!

Which works better?

Sweep net/ Dip net

- Higher species richness
 Differentiates habitats and regions
- Fast
- Captures mobile and sedentary invertebrates
- Higher variability
- May catch fish
- Difficult to use in tules

Leaf Pack

- Differentiates regions
 - Lower variability
- No fish catch
- Does not differentiate between habitats
- Needs 4-6 weeks in the marsh
- May be lost
 - Does not capture mobile invertebrates

Both have their uses.

Acknowledgements

- Stacy Sherman, Dave Contreras, Jared Mauldin, and Matt Siepert for field help.
- Alison Furler, Bonnie Wang, Ryan Kok, Kyle Griffiths, and the Bay Study for help processing samples.
- Fish Restoration Program & our partners at DWR for funding.
- IEP Tidal Wetlands Monitoring Project Workteam for study advice.
- Wayne Fields, Erin Marineau, Sharon Lawler, and the Stockton CFDW lab for providing help with identifications

Corophium, by Rosemary Hartman Stained Glass

Corophium, by Alison Furler Photomicrograph

Corophium, by Jane Hartman Fused Glass

Differences between regions

NMDS of sweepnet data by region

NMDS of leaf pack data by region

Differences between habitat types

Sampling areas

