Designing Tidal Restoration Projects for Physical Processes Brian Wardman, P.E.

Bay-Delta Science Conference
November 16, 2016

Restoration Body of Knowledge

Foundational Outcomes

- Hydrology
- Hydraulics
- Fluvial Geomorphology
- Sediment Transport
- Stream Ecology
- Habitat Structure and Function
- Fish Biology
- Plant Ecology and Riparian Dynamics
- Surveying/Hydrometry
- Watershed Analysis
- Geomorphic and Habitat Assessment
- Biomonitoring/bioassessment
- Alternatives Analysis
- Analytical Techniques
- Restoration Design
- Uncertainty and Risk
- Project Development
- Restoration Policy (codes and regulations)
- Communication and information management
- Construction Inspection
- Professional and Ethical Responsibility

Level of Learning

- L1 Knowledge
- L2 Comprehension
- L3 Application
- L4 Analysis
- L5 Synthesis
- L6 Evaluation

Niezgoda et al (2004).
"Defining a Stream Restoration
Body of Knowledge as a Basis
for National Certification."

J. Hydraulic Eng. Vol. 140, 12.

http://www.smbc-comics.com/comic/2011-12-28

Overview

- Case Study: Tule Red Tidal Mitigation Site
- Project Site
- Objectives
- Channel Sizing and Layout
- Conceptual Design
- Sustainability

Tule Red Tidal Mitigation Site

- SFCWA project to meet goals outlined in BDCP and OCAP.
- Westervelt Ecological Services led design team
- Started Construction in September 2016, bulk of construction in 2017, final breach in 2018 or 2019

Project Site

400 ac site 8,000 ft of **Shoreline** Currently Managed Marsh **Natural Marsh Berm Currently Protects Site** from Inundation

Project Site-Historically

Warner et al (2004). "Floodtide pulses after low tides in shallow subembayments adjacent to deep channels." *Esuarine*

water resource specialists

Objectives

- Overall Objective is to sustainably restore natural tidal marsh processes while meeting objectives of Suisun Marsh Plan.
 - Restore 5,000+ ac. Tidal Marsh
 - Protect and Enhance Existing Managed Wetland
 - Improve Ecological Processes and Reduce Stressors
 - Maintain Waterfowl Heritage and Improve Sporting Opportunities
 - Maintain and Improve Marsh Levee System

Design Objectives

- Full tidal exchange
 - Sediment Delivery
 - Nutrient Export
- No impact to neighbors
- Strengthen existing levee
- 14-day mean residence time
- Balanced cut/fill
- Minimize footprint
- Constructability

Empirical Channel Sizing and Layout

Tide Marsh Morphology

- f(tidal regime, freshwater inputs, vegetative and sediment characteristics)
- Values Published in Literature (Odell et al., 2008)
 - Channel order v. drainage basin area
 - Channel bifurcation ratio v. channel order
 - Sinuous channel length v. channel order
 - Channel top width vs. drainage basin area
 - Channel geometry v. channel top width

Analog Sites

- Odell et al. based on mature salt marshes in San Pablo and South San Francisco Bay
- Honker Bay compared to Odell et al. values

Honker Bay Analog

Odell vs Honker Bay

1 st order – 1 - 3
and 1 2 2
2^{nd} order – 2 - 3
3^{rd} order $-2-4$
4 th order – 10
0m $1^{\text{st}} - 8.9 \text{ m} - 36.5 \text{ m}$
10 m $2^{\text{nd}} - 14.9 \text{ m} - 116.9 \text{ m}$
$3^{rd} - 77 \text{ m} - 131.3 \text{ m}$
600 m 4 th order – 683.3 m
12 m-15 m
1.04
All
]

Numerical Verification

- 2D AdH Model
- Resolved major features (low-order channels, berms)
- Applied tidal boundary condition
- Evaluate tidal muting and channel stability

Numerical Model Channel Stability

 Determine if channel hydraulics will result in channel deposition, erosion, or if channel will be stable.

$$c_f = \frac{gn}{\phi H^{1/3}} \quad u_* = \sqrt{c_f} U \qquad \tau = \rho u_*^2$$

- Erosion occurs if applied shear stress, τ, exceeds shear strength of soil
- Deposition will occur if shear velocity, u*, is less than sediment fall velocity
- Depth, H, and Velocity, U, computed in ADH used to determine shear stress and velocity
- USGS published values of Grizzly Bay sediment used for sediment values

Variable	Value	Unit	Description		
			Critical Shear Stress		
τ_cr	0.05	Pa	(Warner et al 2004)		
ρ	1000	kg/m^3	Fluid Density		
g	9.81	m/s^2	Acceleration due to gravity		
γ	9810	N/m^3	Specific Gravity		
Ф	0.9	-	Porosity (Warner et al 2004)		
	0.000		Bed erodibility constant		
E_0	1	kg/(m2-s)	(Warner et al 2004)		
	0.000		Settling velocity (Warner et al		
r w_s	5	m/s	2004)		

Concepts

Pull Tide Gates-No Grading

 Tidal muting, insufficient flow to naturally create channels, affected neighbors

South Entrance

Constructability concerns

Central Entrance

Maintenance concerns

North Entrance

 Increased residence time, allowed for maintenance berm

Secondary/Distributary Channels

- Important to sediment delivery and nutrient export
- Layout based on Odell et al (2008) and scaled channels from nearby marshes
- Evaluated letting channels naturally form, short "starter" channels, and full excavation

Secondary Channels

- Followed methodology of D'Alpaos (2007) for channel development
- Coupled 2D model results with sediment information- neglected vegetation.

Increase in Channel Length (ft/yr)					
Final Wallace et D'Alpaos et					
As-Built Geom	netry	Geometry	al. (2005)	al. (2007)	
3		10	4-20	10-54	

 Final design includes full channel dimensions due to concerns of growth rate, vegetation

D'Alpaos, et al. (2007) "Spontaneous tidal network formation within a construction salt marsh: Observations and morphodynamic modeling." *Geomorphology* 91. pp 187-197

Residence Time

- Tidal Ponds and Pannes intended to increase residence time.
- Excavated material placed as marsh ridge at MHW surrounding ponds
- Reactor based model following Lionberger et al (2004) used to evaluated residence time, evaporation, and salinity.

	Including Evaporation		No Evaporation	
	and	No	or	
Residence Time	Infiltration	Infiltration	Infiltration	
Minimum	38 hours	45 hours	45 hours	
5 Percentile	63 hours	91 hours	93 hours	
Median	105 hours	202 hours	211 hours	
95 Percentile	210 hours	430 hours	466 hours	
Max	297 hours	677 hours	717 hours	

$$T_{i} = \frac{(V_{i-1} - E\Delta t - I\Delta t)(T_{i-1} + \Delta t) + \Delta V\left(\frac{\Delta t}{2}\right)}{V_{i}}$$

$$V_i = V_{i-1} - E\Delta t - I\Delta t + \Delta V$$

Lionberger et al. (2004).

Salt-Pond Box Model (SP00M)

and its application to the

Napa-Sonoma Salt Ponds, San

Francisco Bay water resources secialists er

Resources Investigation Report

Marsh Accretion

- Krone (1971) model used to evaluate mineral accretion utilizing Warner (2004) measured sediment values in Grizzly Bay.
- Mineral accretion is expected to exceed projected sea level rise over the next 50 years.

	Average Accretion Rate (in/yr)					
Marsh Elevation						
(feet above MSL)	C*=50	C*=75	C*=100	C*=125	C*=200	C*=400
0	0.54	0.81	1.08	1.35	2.16	4.31
0.5	0.42	0.63	0.84	1.05	1.68	3.35
1	0.29	0.44	0.59	0.73	1.17	2.34
1.5	0.17	0.26	0.34	0.43	0.69	1.37
(MWH) 2	0.08	0.12	0.16	0.20	0.33	0.65
(MHHW) 2.5	0.03	0.04	0.05	0.06	0.10	0.21
3	0.00	0.01	0.01	0.01	0.02	0.04

NRC (2012) predicted SLR in San Francisco relative to 2000

- 2030 5.7 in +/- 2 in (0.19 in/yr)
- 2050 11.1 in +/- 3.6 in (0.27 in/yr from 2030-2050)
- 2100 36.3 in +/- 10 in (0.5 in/yr from 2050-2100)

The Design!

Questions?

