A Road Map for Designing and Implementing a Biological Monitoring Program

> Ken Newman, Joel Reynolds, Melinda Knutson, Emily Silverman, Bill Thompson US Fish and Wildlife Service

Bay Delta Science Conference, Sacramento, CA 16 November 2016

3 Main Points

#1 Biological Monitoring Programs are ubiquitous

Google Scholar: "biological monitoring" => 111,000 hits "status and trends" + monitoring => 40,000 hits

3 Main Points

#2 But the Data collected "often fail to deliver useful information for a variety of reasons"

Administrative reasons- inadequate staffing, documentation, funding

Technical reasons- inadequate sampling design and data analysis

3 Main Points

#3 So to address these problems we developed a Road Map for developing and implementing a Biological Monitoring Program

...a 10 step program

Motivation

There are some serious problems with many long-term monitoring programs.

Resulting data often

- Improperly or infrequently analyzed
- Not influencing management decisions
- Biased or Imprecise
- No metadata
- Not being used because the reasons for the monitoring were unclear or unknown.

Recognition of these problems led to

Week long class for USFWS biologists

And Road Map for Biological Monitoring

The Road Map

Tool for designing and implementing a Monitoring program =>

statistically valid and impactful data for improving Biological resource management.

First framework integrating **all** components of designing and implementing a monitoring program.

Structure for discussion between Statisticians, Biologists, and Managers.

Env. Monitoring & Assessment: http://link.springer.com/article/10.1007/s10661-016-5397-x

Steps 1 to $4 \equiv$ Structured Decision Making

From "Smart Choices", PrOACT.

#1. Problem: State what the problem is
#2. Objectives: Define what is wanted
#3. Alternatives: Identify different actions to take
#4. Consequences: Imagine effects of actions (Conceptual Model)
Tradeoffs: compare actions

Smart

Step 1. Define the Problem

e.g., Delta Smelt are an endangered species and they are in danger of extinction

Temporal or spatial scope? Decision makers? Stakeholders? Information Needs?

Step 2. State Objectives "Start with the end in mind", Stephen Covey

Fundamental: WHY? ---should reflect Values....
"Protect and restore Delta Smelt"

Means: HOW?

---the way to achieve a fundamental objective e.g., increase survival. Increase reproductive success. Increase habitat quantity

Delta Smelt Objectives Hierarchy

Step 3: Conceptual Model of the System

"the intellectual foundation upon which the monitoring program rests."

A visual depiction of the current understanding of a system's dynamics

Includes system drivers and management actions (Alternatives) and the connection with fundamental and means objectives.

- Recover Delta Smelt
- Improve Water Supply

Step 5. Decide on an Approach

Step 6. Translate Conceptual Model into a Quantitative Model Objectives => Actions => Consequences _____

U.S. Fish & Wildlife Service

2. Upfront Thinking

Objectives => Actions => Consequences

Step 7. Survey Design

(1) Attributes versus Measurements identify the Sampling Unit

 (2) Snapshots: Plot samples, distance sampling, M/R and Movies: Cross-sectional, Longitudinal, Rotating Panel, ..

(3) Dual sample size problem: within time period sampling intensity number of times (revisits, etc)

III. Implement and Learn: Steps 8-10

Step 8. Collect & Manage Data: Field data collection- Sampling Protocol

Getting "raw" data into databases

								Longitud
Year	Month	Week	SampleDate	Time	TowNum	SiteNum	Latitude	e
	Decembe							
2014	r	1	12/1/2014	7:00	1	TBD	38.17674	-122.287
	Decembe							
2014	r	1	12/1/2014	7:10	2	TBD	38.17674	-122.287
	Decembe							
2014	r	1	12/1/2014	7:20	3	TBD	38.17674	-122.287
	Decembe							
2014	r	1	12/1/2014	7:30	4	TBD	38.17674	-122.287

Step 9. Analyze Data and Report Results

function for calculating confidence intervals given point estimates and # standard errors assuming a lognormal distribution for estimates logn.ci.alt <- function(theta,se.theta,alpha=0.05) {</pre>

- logn.sigma <- se.theta/theta
- z <- qnorm(1-alpha/2)
- LB <- theta*exp(-z*logn.sigma)
- UB <- theta*exp(z*logn.sigma)

Step 10. Update models, Assess Actions, Plan new Actions

Only 1 of the 10 steps is actual data collection!

Concluding Remarks

"I am using the roadmap in my everyday work. I recently had a biometric request that was extremely broad/unfocused, had multiple collaborators, a large spatial scale, and a 10-year time frame for the proposed study. I sent the PIs a copy of the draft Roadmap manuscript and asked them to consider this approach so we could get on the same page. It worked! The PIs seem **relieved to be working towards a more focused goal** and I have gotten only supportive feedback about the roadmap. The roadmap is a great tool to pull people together so I can more effectively focus my efforts."

Anna-Marie Benson, Biometrician, USFWS

