A life cycle model and population viability analysis for wild delta smelt

Leo Polansky

Ken Newman
Lara Mitchell
Will Smith

What affects recruitment and survival in the wild?

What affects recruitment and survival in the wild?

1) Standardize survey data

2) Develop and fit a life-cycle model

1) Standardize survey data

Need abundance estimates for each life-stage from many cohorts

Cohorts: 1995-2012

Life-stage
Juveniles
Subadults
Adults

Survey
20mm
FMWT
SMWT (1996-2001)
SKT (2002-2013)

Month
June
Nov (modeled)
Jan/Feb (of year+1)

Observations: Design-based abundance estimates

Stratified ratio expansions
Total abundance = Sum of subregion abundances
Subregion abundance = Subregion Catch density * subregion volume

Catch density =

Sum of adjusted catch

Sum of effective volume sampled

Adjusted catch=Catch/Prob(catch)
Adjust according size of fish caught

Effective volume adjusts volume by:
Gear Selectivity Curves
i) How much water was sampled in the top 4 m of water

Oblique vs. surface tows
ii) How the density of fish is assumed distributed within this 4 m slice

Observed subadult abundance is modeled

Under the hood

Currently using a FMWT specific state-space model to further account for relative FMWT bias

Still, 2005 cohort: Subadult $=374,726$, Adult=480,448

Covariate data

Recruitment (9)

Food, outflow, X2 location, previous adult size, OMR, water temperature, temperature, predator abundance indices (ISS and striped bass)

Juvenile survival (8)

Food, outflow, X2 location, predator abundance indices

Subadult survival (4)

Food, outflow, X2 location, OMR

All together

9*8*4=288 different unique combinations of covariate triplets

2) Develop and fit a life-cycle model

Process (X)

2) Develop and fit a life-cycle model

Process (X)

Survival ~ Logit-normal(mean=f(covariates) ,variance)
Recruitment ~ Log-normal(mean=f(covariates), variance)

2) Develop and fit a life-cycle model

Survival ~ Logit-normal(mean=f(covariates) ,variance)
Recruitment ~ Log-normal(mean=f(covariates), variance)

Hierarchical Bayesian state-space model
Allows for:
Covariates to influence recruitment and survival
Serial dependence in predicted abundances

Abundance estimate error

Fit:
Using Bayesian inference (JAGS)
Diagnostics look good

Result from an "all flow" model

All vital rates depend on mean outflow

Result from an "all flow" model

All vital rates depend on mean outflow

Evidence across models

Juvenile recruitment

Good: Food, outflow, spawning adult size

No support: A water temp index

Bad: High X2, lots of age 0 striped bass

Evidence across models

Juvenile recruitment

Good: Food, outflow, spawning adult size

No support: A water temp index

Bad: High X2, lots of age 0 striped bass

Juvenile survival

Good: Food, outflow, temperature, age 0 striped bass

Bad: High X2, age 1 striped bass, inland silversides

Evidence across models

Juvenile recruitment

Good: Food, outflow, spawning adult size

No support: A water temp index

Bad: High X2, lots of age 0 striped bass

Juvenile survival

Good: Food, outflow, temperature, age 0 striped bass

Bad: High X2, age 1 striped bass, inland silversides

Adult survival

Good: Food, high X2

Bad: High outflow and OMR ???

Good years and bad years

$$
\text { Population growth }=\lambda_{t}=\frac{\mathrm{N}_{\text {Adults }, \mathrm{t}}}{\mathrm{~N}_{\text {Adults },-1}}
$$

Good years: 1995, 1997, 1999, 2010, 2011, maybe 2006
Bad years: 1996, 2002, 2004, 2005, 2007, 2009, 2012
All flow model

Unpacking good and bad years

 1995 Decent recruitment, high survival 1998 Poor recruitment, decent survival

1996 Great recruitment, poor survival 2005, 2009, 2012- Marginal recruitment and survival

Growth rate comparison SSM vs. IBM of Rose et al.

Growth rate: - Negative ~1 Around 1 + Positive

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
All flow model	+	-	+	+	+	-	~ 1	-	~ 1	-	-
Rose et al.	+	+	-	+	+	-	-	-	-	-	-

3) Population viability analysis

Simulate future abundances using a fitted model

2 future scenarios:

1) The future is stochastically similar to the past
2) What if spring or summer never experience high flows?

Percent of 10,000 simulations declining

1) When the future is like the past

Percent of 10,000 simulations declining

1) When the future is like the past

All 288 models

Percent of 10,000 simulations declining

1) When the future is like the past

All 288 models

2) When the future is constrained, all flow model

- Low flows
- Medium flows
- High flows

March-June flows

Percent of 10,000 simulations declining

1) When the future is like the past

All 288 models

2) When the future is constrained, all flow model

- Low flows - Medium flows - High flows

March-June flows

June-Nov flows

Many elephants

Model is simple, data is noisy, no larva life-stage, drought,...

1) Flow matters
2) Perhaps more so for recruitment than survival
3) Good vital rates for all life-stages needed to realize positive population growth

Acknowledgements: IEP, CA FWS, CA DWR, USGS

