Quantifying hatchery versus wild origin of Chinook salmon on the Feather River

Malte Willmes, Zachary Bess, Anna M. Sturrock, J ustin J. G. Glessner, Ryon Kurth, J ason Kindopp, Rachel J ohnson, James A. Hobbs

Chinook salmon in California

- Chinook salmon have persisted in California's variable climate by utilizing a wide array of run types and life history strategies, and wide geographic distribution

Fall run chinook salmon in California

- Fall run
- form the backbone of California's salmon ocean fishery
- are heavily subsidized with the production of hatchery fish
- hatchery practices can influence their long term resilience
- Managing salmon stocks requires a detailed understanding of environmental and anthropogenic drivers

What is the contribution of hatchery vs wild fish to the population?

- Feather river as a case study
- "Wild" = A fish that reared in the river
- "Hatchery" = A fish that reared in the hatchery
- Constant fractional marking (CFM)

Constant fractional marking 2011

All CV

- Hatchery - Wild

Mokelumne River

Data from Palmer-Zwahlen and
Brett Kormos, 2013 CFM recovery report

Salmon stock collapse

- The proximate cause of the salmon stock collapse were poor coastal ocean conditions (Lindley et al., 2009) that led to low food availability
- Underlying cause is the loss of life history diversity in the CV

Feather river CFM

20112012

Data from Palmer-Zwahlen and Brett Kormos, 2013, 2015 CFM recovery report

- What was the contribution of hatchery vs wild fish before 2010?
-> Otolith microchemistry

Otolith microchemistry

- Otoliths ("ear bones") can provide a detailed life-Iong archive of movement across different environments (watersheds, rivers, ocean)
- Strontium isotope ratios vary depending on the underlying geology, age, and geochemistry of the watershed
- Reconstruct life history by matching ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}_{\text {Otolith }}$ to ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}_{\text {watershed }}$

Environmental ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ in the Central Valley

Feather River sample analysis

Samples ($\mathrm{n}=755$) collected by carcass survey from 2002-2010, stratified by location and time
${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ isotope life history for each individual fish

Otolith extraction and preparation

Analysis

Interdisciplinary Center for Plasma Mass Spectrometry

Nd:YAG 213 nm laser + Nu Plasma HR MC-ICP-MS

Otolith analysis

Natal origins

- Match otolith freshwater residence to river isotope baseline using quadratic discriminant function analysis
- Evaluation using known CWT fish ($\mathrm{n}=110$): ~95\%classification success

Natal origins

Strays

Hatchery vs wild origin

Escapement year
\square Hatchery $\quad \square$ Wild

Hatchery vs wild origin

Hatchery vs wild origin

Hatchery vs wild origin

Why did the \%hatchery fish decrease during the salmon stock collapse?

- Hatchery release occurs over a short time window
- Outmigration of wild fish occurs over a wider time window

Huber and Carlson, 2015

Hatchery vs wild origin

Why did \%hatchery fish increase after the salmon stock collapse?

- Production of hatchery fish remained stable (or increased)
- Wild fish spawning was lower during the stock collapse

Take home points

- ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ isotope ratios of otoliths can provide detailed insights into fish life history and natal origin
- Pre salmon stock collapse we observed an increase of 51% - 65% of hatchery fish over time
- During the salmon stock collapse proportionally more wild fish returned, indicating that they survived better than their hatchery counterparts
- After the salmon stock collapse the in-river spawning grounds became dominated by hatchery fish ($\sim 90 \%$, indicating a faster rebound of the hatchery fish population

Future directions

- Extend this dataset to include more escapement years
- Look at the effect of the recent drought
- Investigate additional markers in otoliths (e.g. microstructure, vaterite)
- Determine timing and size at outmigration

Otolith analysis

