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Goals of this talk:

< Briefly explain what we are doing -- and why.

< Try to interest potential collaborators with

modeling, statistical, and ecological expertise -- to
help us make better use of our data and
biogeochemical expertise to develop and/or test
fish habitat or other hydro-biogeochemical
models.




Our ongoing POD-oriented projects since 2009
are investigating:

“ spatial and temporal changes in the relative
contributions of NO3 vs NH4 to phytoplankton blooms in
the Delta.

“* whether NO3 or NH4 is the dominant N source
supporting Microcystis growth in the Delta, and the
geographic sources of the nutrients.

“* geographic sources of nutrients and organic matter to
the Sacramento River, Delta, and Bay.
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Our ongoing habitat-oriented projects since 2009

are investigating:

“* the relative impact of different Delta biogeochemical
processes (nitrification, uptake, organic degradation, etc)
on water chemistry and ecological issues.

“ the effects of small differences in flow on ecosystem
biogeochemistry and (ultimately!) fish abundance.

All these POD and Habitat studies involve
piggybacking a multi-isotope approach
onto chemical and hydrological monitoring
programs.




Approach: We use a comprehensive multi-isotope and
multi-tool approach for quantifying nutrient and organic
matter sources and biogeochemical processes.
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Since 2009, all new samples are analyzed for:
»Water 6120 and 6%H

»Nitrate 6*°N and 6180

»Ammonium 8N

»POM 613C, 6'°N, 834S, C:N, and C:S

»DOC 813C and %C

» Chemistry (extensive data from our partners)

Subsets of samples also analyzed for:
»DIC 313C

»DOM 8%3C, 6N, 534S, and C:N, C:S
»Sulfate 634S and 8180

USGS | » Other chemical and isotopic analyses.
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and habitat indices

The USGS Water Quality of San Francisco Bay program has been
measuring nutrients, chlorophyll, and other parameters since 1969.

We have piggybacked on USGS and other sampling programs to
generate multi-isotope data for 2006-2016 -- with a range of flows
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Nitrification of NH, provides a distinctive isotopic signature

for wastewater-derived NH, through the Delta.
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Long-term average values at Bay-Delta sites are usually
linearly correlated with salinity
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Long-term average values at Bay-Delta sites are usually
linearly correlated with salinity
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We have developed a new DOM isotope method!

Using it, we find that DOM, like POM, is largely aquatic in origin (in
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situ) — with C-N-S isotopic compositions influenced by the mixing of

DIC, NO3, NH4, and SO4 from freshwater and marine sources.
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The downstream trends of the &0 of NO3 and H20 are
similar because of progressive nitrification —where the new
NO3 is formed in contact with the ambient H20.
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Strong seasonality in the NO3 and NH4 concentrations
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NO3 seasonality initially
defined by NO3
concentrations
upstream of SRWTP.

NH4 seasonality initially
defined by NH4
concentrations from
SRWTP effluent.



Conceptual model showing how uptake of N results in algae
with a lower 8°N than the N source.
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If the NH4 and NO3 have distinctively different 6°N values,
the 6'°N of algae can, in theory, be used to estimate the
proportions of NH4 and NO3 assimilated by the algae.



BASIC IDEA: Samples plotting below the 1:1 line are inconsistent
with NO3 as a plausible dominant N source to the algae; samples

above are consistent.
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NH4 is the dominant source of N to algal uptake in the SR but
many samples seem to have some portion of NO3-uptake
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During falls of dry years (2012 & 2013), nitrification causes
significant increases in NH4-6°N and resulting algae, and
lower proportions of NO3 uptake.

NO3-6°N & NH4-6°N
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During falls of wet years (2006 & 2011), nitrification causes
smaller increases in NH4-81°N and resulting algae, and

NO3-6°N & NH4-6°N
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NO, and algae 6'°N analysis shows that
Microcystis are not using NO,

7 1:1 line
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Stable isotope mixing model to
calculate how much of the algae
derives its N from NH4 uptake
(instead of NO3 uptake)

- 8N

NOB) algae ]
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But first we must calculate the
e Isotopic composition of algae from
POM isotope data..

Is a 2-component (algae/bacteria and
Cartoon terrestrial OM) model acceptable?



Conclusions:

* Flow is a major control on chemical and isotopic variations, with
significant differences for wet/dry falls and wet/dry springs.

= The C-N-S isotopes of the POM are sensitive to changes in
salinity, nutrient sources, extent and type of C-N-S cycling,
geographic sources of the POM, quality of the organic matter,
etc. — making them useful tracers of habitat environmental quality
conditions.

= Nutrient isotopes are allowing us to estimate NO3 vs NH4
uptake proportions.

= The temporal and spatial variations in chemical and isotopic
data should allow calculation of relative proportions from sources
and extent of several biogeochemical reactions.

= We are looking collaborators with modeling, statistical,
and ecological expertise -- to help us make better use of our
data and biogeochemical expertise to develop and/or test
fish habitat or other hydro-biogeochemical models.




Thanks to:

(1) the USGS RV Polaris team for letting us piggyback our isotope sampling
on their monitoring program 2006-2016, and for providing the chemistry for
the samples (http://sfbay.wr.usgs.qov/);

(2) Brian Bergamaschi (USGS) and his team for providing boats and
skippers for our “Slough project” and FLaSH project sampling trips, 2011-12.

(3) Randy Dahlgren (UCD) for the chemistry data for “Slough project”
samples.

(4) Our funding sources for this study:
USGS National Research Program
Bay-Delta (CALFED) Program
Interagency Ecological Program
Bureau of Reclamation
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http://sfbay.wr.usgs.gov/

Questions?
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